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PROJECTSTATEMENT

Objectives
(a) Develop a general mathematical and computational model that
can describe the flow of semisolid materials,

(b) Study various flows through modeling and simulation in order
to validate the models and to study the flow behavior at the level
allowed by the mathematical models. Obtain insight into the bulk
flow of semisolid materials and help identify the influence of
various flow parameters on the final produ~.

Strategy
Developed a general phenomenological mathematical model that describes the flow
of viscoplastic materials with shear and time dependent properties and used actual
experimental data to fit the model parameters,

ACHIEVEMENTS TO DATE

The following tasks were completed:
. Development of mathematical and computational models
. Study of basic flow geometries and development of processing maps
* Document the stability for semisolid material flow into a simple cavity

CHANGES IN PROJECT STATEMENT

None
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WORK PLANNED FOR THE NEXT QUARTER

Determine the material constants through
modeling of the compression experiments
the constants in the constitutive relations

PROJECT SCHEDULE

“reversed engineering”. This includes
performed by Pan and Apelian to establish

I Task I November I December I January
I Mathematical I xxxxxxxxx I XXXXX

I Computational I
I Model

Xxxx Xxxxxxxxx Xxxxxxxx
code

I Numerical I
Simulations
Repott

APPENDIX

Februarv

A.N. Alexandrou, P. LeMenri, D. Apelian, “On the Reliability of the
Process,” Metallurgical Transactions (to be submitted).
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Worcester, MA 01609, USA

bInstitute for Problems in Mechanics of the Russian Academy of Science

pr. Vernadskogo, 101, 117526 Moscow, Russia
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Abstract

In this paper we investigate the interaction of a two-dimensional
jet of a Herchel-Bulkley fluid with a vertical surface at a distance
L from the die exit. This problem also simulates the early stages
of filling of a two-dimensional cavity. The main purpose of this
work is to study numerically flow instabilities for this flow ar-
rangement. Results are obtained for a range of Reynolds and
Bingham numbers, and we establish the effects of these dimen-
sionless numbers on both the filling, and the stability of the jet.

1 Introduction

Materials that exhibit no deformation below a finite applied shear stress
(TO) are known m Bingham plastics [1]. Examples of such materials in-
clude paint, slurries, aqueous foams, pharmaceutical products, pastes, poly-
meric solutions, paper pulp, food substances like margarine, mayonnaise and
ketchup [2], colloidal suspensions [3], plastic propellant doughs [4], drilling
fluids [5], and semisolid materials [6].
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The motivation of the present work is our interest in the processing of
semisolid slurries. These are two-phase slurries whose behavior can be rep
resented using a Herschel-Bulkley fluid model. In processing of such slurries
filling patterns are often irregular and unpredictable, pointing to the exis-
tence of possible instabilities. Here, we investigate the ‘(toothpaste” behavior
which is a typical flow instability observed in semisolid slurry processing. Fig-
ure 1 shows an experimental observation of such an instability: aa shown,
even though the part is symmetric, the left arm develops a wave-like pattern
after the jet hits the closed-end of the cavity. A similar jet profile is also
shown in Fig. 2, The name ‘~toothpaste” comes from the similarity between
this instability and the toothpaste behavior when forced out of its tube. F!rom
a practical point of view such instabilities are undesirable and can lead to
non-uniformities in the parts being made. Investigations by Midson et al.
[7, 8] provide further evidence of these instabilities, and demonstrate exper-
imentally that slow filling yields the ‘tbest” die filling behavior, with mostly
laminar flow, and the least amount of material folding. In general, these
instabilities originate at the point where the filling front in the form of a
jet meets the wall of the cavity. Therefore, the jet-vertical wall arrangement
chosen here represents well the early stages of filling of a 2-D cavity. To our
knowledge no similar investigation haa been reported in the literature.

Several theological equations and yield criteria have been proposed [9, 10,
11] to describe the stress-deformation behavior of materials exhibiting a yield
stress. The most commonly used model is the Bingham model [1, 12, 13],
which in tensorial form is expressed as:

~=o for T~To, (1)
=

(2)

where$ = (VU + VUT) represents the rate of strain tensor, ~ the extra stress

tensor~~O the yield stress and q the viscosity of the defor;ed material. T

and + are respectively the second invariants of the extra stress and rate of
strain tensors; defined W:

T=
1

<1/2

[1~.. 1/2

~T~jTjk and ~ = ~yijyjk . (3)
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The theological behavior of a Bingham fluid is characterized by two different
flow regimes: if~~~Othe material behaves ~arigid solid, If~~~Oitflows

To
with the apparent viscosity q~PP= q + ~.

7

The Herschel-Bulkley model is a generalization of the Bingham model
that takes into account changes in the effective viscosity with the applied
shear rate. The Herschel-Bulkley model aasumes that the effective viscosity
upon deformation follows a power-law behavior:

(4)

where n and ~ are the power-law and consistency indices, respectively. The
fluid behavior is shear-thickening for n > 1,and shear-thinning for n < 1.
For n = 1, the Herschel-Bulkley model reduces to the Bingham model with
the consistency index equivalent to the viscosity,

The two distinct regions (yielded (~ > TO)and unyielded (~ < TO)) of the
fluid are separated by the “yield surface” defined * the surface where the
local stress is equal to the yield stress. In numerical modeling, in addition
to the non-linearities in the governing equations, an inherent difficulty is the
discontinuity in the constitutive relation. Due to the presence of ~ in the
denominator of Eq. (2), the apparent viscosity becomes unbounded at van-
ishing shear rates. Also, while calculating the velocity field the shape and
location of the yield surface are unknown. Although this does not consti-
tute any limitation in analytic solutions in simple cases such m flow in tubes
[14], it introduces significant difficulties in more complicated problems that
are only amenable to numerical analysis. To overcome these issues, several
modified versions of Eqs. (1) and (2) have been proposed [15, 16, 17, 18].
Keunings [19] reviews current developments in the field of computational rhe-
ology applied to the prediction of the flow of polymeric liquids, i.e., highly
non-Newtonian materials, in complex geometries. Many of the reviewed pa-
pers are representative of current trends in the field of numerical modeling
of Herschel-Bulkley fluids.

For numerical modeling purposes, a common approach is to approximate
the theological behavior of the fluid to be valid uniformly at all levels of stress.
Papanastasiou [15] introduced a regularization parameter m that controls the
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exponential rise in the stress at low rates of strain:

[

1 – exp (–m~)
T= ~+To 17“= ? = (5)

The parameter m has dimensions of time. This constitutive relation is ex-
pressed in terms of three independent material parameters, TO, ~, and n,
which are determined from experimental data. The Herschel-Bulkley behav-
ior is approximated for relatively large m values. According to Eq, (5) for

7 w O the apparent viscosity is finite, given by q.w = (q + m~O). The con-
stitutive relation is then expressed as ~ = (q + m~O)~. Papanastasiou [15]

validated this model on several simple flows such as on=-dimensional channel
flow, two-dimensional boundary layer flow and extrusion flow. The accu-
racy and effectiveness of this model in representing Herschel-Bulkley fluids
h= also been demonstrated by Elwood et al. [20], Mitsoulis and Abdali
[21], Tsamopoulos et al. [22], Blackery and Mitsoulis [23] and Burgos et al.
[18, 24].

Experimental data reported by Ellwood et al. [20], Keentok et al. [25]
and Dzuy et al. [26] actually demonstrate that a continuous model pro-
vides a better approximation to experimental data than the ideal model.
Therefore, it is postulated that the ideal Bingham model maybe only a the-
oretical idealization. Recent investigations by Blackery and Mitsoulis [23],
Beaulne and Mitsoulis [27], Papanatasiou and Boudouvis [28] concentrate on
problems that involve Bingham and Herschel-Bulkley fluids. In these studies
the material was also modeled using Papanastasiou’s regularized constitutive
equation.

In a recent study, Alexandrou et al. [29] investigated filling of a 2-D
cavity by Bingham fluids. They examined the relative importance of iner-
tial, viscous and yield stress effects on the filling profiles. They identified
five characteristic filling patterns: “mound,” “disk,” “shell,” “bubble” and a

“transition” between that of “mound” and “bubble” patterns. A summary
of these different flow behaviors is shown in Fig. 3. These characteristic
flow patterns highlight the important role of the finite yield stress in Bing-
ham fluids. Experimental studies confirmed the existence of the numerically
obtained patterns; the “mound,” “disk,” and “shell” patterns have been
observed by Paradies and Rappaz [30] in semisolid processing. Recent ex-
perimental results by Koke et al. [31] also confirmed these patterns by using
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model substances such w chocolate cream, calcium-carbonate/oil suspension,
tomato paste, ultrmonic gel and Newtonian silicone oil.

The main objective of the present work is to investigate the stability of
a jet of a Herschel-Bulkley fluid emanating from a die and impinging on a
vertical wall, As discussed earlier, this flow arrangement simulates also the
early stages of filling of a 2-D cavity. Since the results obtained by Alexan-
drou et al. constitute the equilibrium states for the problem considered here,
for the purpose of the present study we also simulated the cmes considered
in [29].

2 Mathematical and Computational Model

2.1 Governing Equations

The schematic of the problem considered here is shown in Fig. 4. The
2-D geometry is characterized by the inlet section (length 1 and height H).
The material is injected in the die from the left side and hits the vertical solid
surface at a distance L away. The flow WM modeled using the conservation
of mass and momentum for an incompressible fluid:

V“u=o, (6)

‘[~+u”vul=v”~ (7)

where u is the velocity vector, p the density of the fluid, and ~ the total
stress tensor, which is given by

Here P represents the total pressure, ~ the unit tensor, and ~ the viscous
stress tensor. The body force per unit volume due to gravity was neglected
in this study.
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2.2 Non-Dimensionalizat ion

The set of governing equations (Eqs. (6) and (7)) were non-dimensionalized
using:

xi t
x;=—; t*=—”

H’
?; p“=c. ~*= LT. ~*=Lo

H/u. ‘ ‘* = u. To’ = To=’ = To=’
(8)

where H is taken * the inlet height and U. the average inlet velocity. Due
to the non-dimensionalization the imposed volumetric flow rate is Q* = 1.

2.3 Dimensionless Equations

Using the dimensionless groups introduced in Eq. (8) we can rewrite the
governing equations in a dimensionless form:

V“U*= o, (9)

(lo)

Here,
O* = –p”:+ T*,

is the total non-dimensional ~ress tensor. ~ccording to Eqs. (9) and (10)
the fluid behavior depends on two dimensionless parameters, the Reynolds
(Re) and Bingham (Bi) numbers, defined respectively m:

~e _ pUoH
–— and Bi=

TOH

~eff ~ef fuo”
(11)

The effective viscosity ~eff is obtained from the one-dimensional analog of
the constitutive equation (Eq. (5)):

(12)

where ~ is the shear rate, and q~ff = R I ~ I‘–1 is the effective viscosity.

Therefore, the Reynolds and Bingham numbers are generalized m:

(g-n)~n

Re =
puo ToHn

and Bi = —
K KU: “

(13)



The Herschel-Bulkley constitutive relation, Eq. (5), can thus be rewritten
in a dimensionless form:

[

1 ,*(n-1)+ [1 - exp (-m”?”)]

‘“ = R7 1~“>= “*7 (14)

where ?* is the dimensionless rate of strain tensor, Y* its second invariant,

and rnF the dimensionless growth exponent, which are respectively defined
as

(15)

Equation (14) has only two independent material parameters (Bi and n),
whereas Eq. (5) had three (~, To, and n), Hereafter, for convenience, the
asterisk (x) is dropped from the non-dimensional variables and all physical
quantities mentioned are implicitly dimensionless.

The flow is established by applying a fixed dimensionless volumetric flow
rate (i.e., Q=l) at the inlet with a parabolic velocity profile imposed at the
entrance plane of the inlet. The inlet length is fixed at a sufficient distance
1 so that the flow becomes fully developed prior to reaching the exit of the
die. In this study the non-dimensional length of the inlet was fixed at 1 = 5
which was found to be sufficient to ensure fully developed flow in the die.
Along the die walls the velocity was set to zero. The same no-slip condition
was imposed at the end-wall,

As mentioned earlier, different lengths L were used in order to study
the influence of this geometrical parameter on the stability of the jet. The
simulation is initialized when the jet emanating from the inlet section reaches
the end-wall. The initial jet profile is taken from the steady state results,
and corresponds to a column of fluid hitting the end-wall at velocities u = 1,
‘?JWo.

3 Method of Solution

The governing equations and constitutive relation were discretized using
the clmsical mixed-Galerkin finite element method with nine-node rectan-
gular elements. The resulting non-linear system of equations wm linearized
using a Newton-Raphson iteration procedure. For converged results in the
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Newton-Raphson iterative scheme, usually three to four iterations were nec-
essary at each time step.

A detailed presentation of the mixed-Galerkin finite element discretization
for the extrusion problem can be found in [20, 32, 33]. The nonlinear system
of equations resulting from this analysis is then solved by Newton-Raphson
iteration, The spatial discretization reduces the set of equations to a system
of ordinary differential equations:

(16)

where q = [uI(g,z,~),vI(Y,z,~),....hNh(z,t)]is the vector of all the time-
dependent nodal unknowns, R is the column vector of the time-dependent
Galerkin residuals. The time derivatives are discretized by
ward difference scheme,

“~=M”[qn+~~qnl‘R(qn+’)o
Thus all the nodal unknowns of the velocity components
evaluated simultaneously. The free surface is calculated

a standard back-

(17)

and pressure are
automatically by

properly assigning the velocity of the nodes along the free surface to reflect
the fact that the free surface is a material surface.

Equation (17) is then solved at each time step by Newton-Raphson it-
eration for u, P, and h. The set of linear equations is repeatedly solved
by a frontal technique [34, 35, 36] developed by Hood [37]. The tessellation
is updated at every iteration with the newly found free surface. The ini-
tial conditions are those of a jet from its steady state. The initial velocity
and pressure fields are determined from the steady-state counterpart of the
problem at the initial configuration.

4 Results

In this work, we concentrate on a problem equivalent to that of die fill-
ing, i.e., the interaction of a Herschel-Bulkley fluid jet
at a distance L from the die exit and we study the
ertia, viscous drag and yield stress, or as expressed
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unit depth, Fi - pU~H, Fv - qUO, and F.O E TOH respectively (Fig, 5),
Non-dimensional analysis shows that the flow depends on two dimensionless
parameters: the Reynolds (Re) and Bingham (Bi) numbers. The Reynolds
number represents the Fi/Fv ratio, while the Bingham number indicates the
FTO/Fvratio. A third choice is the Saint-Venant number which indicates the
importance of the yield stress effects relative to inertia forces (F,O/F1) and
which is defined as:

Sv = :;
To

—=~. (18)

Obviously, only two of these three parameters are independent. The appro-
priate choice of parameters depends on the flow regime being analyzed. The
effects of Re and Bi are investigated using the two-dimensional geometry
shown in Fig. 4, with the finite-element mesh shown in Fig. 6.

The parameter m in the regularized model was set to a value of m = 1000,
which waa found to be high enough to insure results independent of m. The
reported results are also mesh and time-step independent. A more pertinent
study of the effect of m on the accuracy of the results can be found in [18, 24],
The power-law index n was set to a value of n = 1 M in [29].

Figure 7 shows the results for conditions similar to those in [29]. The five
typical flow behaviors reported in [29] have been reproduced here as well,
providing thus further evidence on the existence of these patterns. Table 1
summarizes the flow parameters for the flow patterns shown in the aforemen-
tioned figure.

Re
500
6
0.5
1
10

13i
10
0.1
0.1
3
1.7

Flow Pattern
Shell
Disk
Mound
Bubble
Transition

Table 1: Flow parameters used for the displayed
geometry).

The figure also shows the topography of the
gions. As shown in the figure, only the “bubble”
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exhibit significant unyielded zones. Therefore the first three patterns behave
in a manner consistent with a viscous fluid. The ‘~bubble)’ and ‘{transition”
patterns, though, are expected to be influenced by the yield stress effects.
As we will demonstrate below, flow instabilities are primarily connected to
these two patterns.

The following results examine the interaction of the Herschel-Bulkley jet
with a vertical wall m a function of theological and geometrical parameters.
Numerical simulations of flows that in real life are unstable may fail to predict
flow instabilities. This is due to the almost perfect symmetry of numerical
results, and due to the fact that numerical errors take a long time to grow
to a magnitude that can trigger instabilities. Therefore, it is customary
to introduce an artificial disturbance to disrupt the symmetry of the flow.
This artificial instability is typically very small, and it is applied for a short
duration. Here, a small disturbance is introduced in the flow by imposing
an mymmetric velocity profile at the inlet for a short time At, beginning
at the moment the jet reaches the vertical wall (defined as t = O in the
following). F’or t > At, the inlet velocity w= kept constant and symmetric.
In both the symmetric and asymmetric cases the volumetric flow rate was
kept constant. The flow field and the jet stability are found to be independent
of the magnitude and the duration of the asymmetry.

The finite-element mesh used in the simulations is refined around zones
that are sensitive to flow singularities and where gradients are large (die exit
and end-wall). The case n # 1 is considered at the end of the present study.
The unsteady simulation is initiated at the time where the jet hits the vertical
wall (t = O). The initial conditions were taken from the steady solution of
the problem for the configuration when the jet is about to touch the wall.
The geometry used here includes an inlet section (H = 1, 1 = 5), and a
vertical wall at a distance L from the exit of the die. Results are also shown
for variable values of L. Typical jet-wall interactions obtained numerically
are shown in Figs. 8 and 9, as sequences of ‘snapshots’ of the jet profile,
where t is the non-dimensional time.

Figure 8 shows the jet behavior for the L = 10 geometry at a low Reynolds
number (Re = 1) and at a moderate Bingham number (Bi = 3). For a
symmetric velocity profile at the inlet (i.e., no disturbance), these conditions
lead to a “bubble” pattern. Here, when the jet emanating from the inlet
section reaches the vertical wall, it grows m a ‘gbubble” up to a dimensionless

10



,,

time t w 7. When the disturbance is introduced from the start of the flow
(t = O) until t = At = 1.5, it triggers an instability which forces the jet
to bend, very much like the buckling of a slender solid column. This flow
behavior is very similar to what is observed experimentally and described
aa the ‘(toothpmte” effect. For the discussion that follows such behavior is
labeled as “unstable”.

The flow shown in Fig, 9 is obtained for Re = 5 and ~i = 1. For
both symmetric and asymmetric flow conditions the jet grows in a manner
consistent with a “transition” pattern. Therefore, the initial disturbance has
no impact on the stability of the jet, and no noticeable difference can be
observed between the symmetric and asymmetric cmes, In the discussion
below this flow behavior is labeled m “stable”.

Figure 10 shows a complete map of the jet profiles as a function of the
Reynolds and Bingham numbers for the range 0.5 s Re s 50, 0< Bi s 40.
This map clearly shows the regions where “stable” and “unstable” patterns
occur. The estimated boundary between these two zones hm been sketched
in in order to demarcate the range of Re and Bi which they correspond to.
On this map, the symbols A, ●, ❑, v represent respectively the “mound,”
“disk,” “bubble” and “transition” patterns. The hollow symbols (Cl, and
V) represent the caaes discussed in detail (Figs. 8 and 9). As speculated,
while “bubble’) pattern leads to unstable jet behavior, “shell,” “disk” and
‘tmound” patterns remain stable and most of the “transition” c~es lead to
stable jet profiles. The “bubble)) pattern is very sensitive to flow instabilities,
that prevent this pattern to develop. These numerical results explain why
experimental observations of the ‘(bubble” pattern are not m common as the
other patterns. It is clear from the results that the instabilities are indeed
the result of the finite yield stress and the way yielded and unyielded regions
interact with each other.

As mentioned earlier, it is possible to express the results in terms of
the Saint-Venant number as shown in Fig. 11. In the map, the squares
(9) represent stable configurations and the upward pointing triangles (A)

correspond to unstable behaviors. The hollow markers (Cl and A) correspond
to the cases shown in Figs. 8 and 9. The advantage of considering the Saint-
Venant number is that it is independent of the characteristic length scale
parameter H, and is expressed in terms of fluid properties and kinematics of
the flow.
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SO far the length L was kept constant. However, the stability charac.
teristics depend also on the length of the die L. The effect of the distance
between the die exit and the vertical wall waa established by using three
different lengths L= 10, 15and 20. Figure 12 highlights this effecton the
stability of the jet forgiven theological parameters (Re= 1, Bi =0,7). The
jet behavior is either stable and symmetric (Fig. 12(a), L= 10) or unstable
and toothpaste-like (Fig, 12(b), L = 15, and (c), L = 20). ‘l’hisdernOn-
strates that the longer the die, the more likely itis to observe thetoothpmte
instability. Figure 13 summarizes this behavior in a manner similar to Fig.
10 for L = 15 and L = 20. The map shows the estimated boundaries between
stable and unstable jet behavior for the three lengths studied. The solid line
represents the L = 10 cme while the daahed line and the dashdotted line
stand for the L = 15 and L = 20 cases, respectively, From that figure, the
overall jet stability is confirmed: the longer L, the more likely it is to observe
toothpaste-like instabilities,

The results shown are for Bingham fluids (n = 1). However, once the yield
stress is exceeded, Herschel-Bulkley fluids flow either in a shear-thinning or
shear-thickening manner. The effect of the power-law exponent was studied
for two cmes: one corresponding to a shear-thinning fluid (n = 0.5) and
another to a shear-thickening fluid (n = 1.5), For both cases the lengthWw
set to L = 15. Figure 14 shows the overall stability behavior = a function
of n. Again, limiting lines separate stable and unstable behaviors. The solid
line represents the n = 1 case while the dmhed line and the dashdotted line
stand for the n = 0.5 and n = 1.5 cases, respectively. A shift between the
three limiting lines can be observed: the smaller the power-law index, the
more unstable the flow is. In other words, a shear-thinning behavior is more
sensitive to instabilities than a shear-thickening one. It appears also that
the power-law index becomes less important (actually it is not important at
all) for large values of Bi, This is due to the fact that for large Bi the flow
behaves more like a solid as very little of the fluid deforms.

5 Conclusions

The numerical simulations presented in this study verify the importance
of the finite yield stress in Herschel-Bulkley flows. The results confirm the



existence of five characteristic flow patterns (“shell,” “disk,” “mound,” ‘ibub-
ble” and “transition”) that have been observed both experimentally and nu-
merically. By controlling flow parameters, one may be able to a priori fix jet
behavior to lead to desirable quality and properties of the final parts.

In actual Herschel-Bulkley flows, the injection process is very sensitive
to flow instabilities which may lead to irregular and unpredictable filling
patterns. This undesired behavior is likely to happen at distinct combinations
of flow parameters. Stability maps of the injection process have been drawn
as a function of these parameters. It was concluded that the most unstable
pattern is that of “bubble” and to a lesser degree that of the “transition”
pattern, primarily due to the effects of the yield stress.

Acknowledgments: Partial support for this study W= provided by Alu-
minium Pechiney, Prance.

References

[1]

[2]

[3]

[4]

[5]

[6]

Bingham E. C. Fluidity and Plasticity. McGraw-Hill, 1922.

Vradis G. C., and Otugen M. V. The axisymmetric sudden expansion
flow of a non-Newtonian viscoplastic fluid. Journal of Fluids Engineer-
ing, 119:193–200, 1997.

Covey G. H. and Stanmore B. R, Use of parallel-plate plastometer for
the characterization of viscous fluids with yield stress. Journal of Non-
Newtonian Fluid Mechanics, 8:249, 1981.

Carter R. E. and Warren R. C. Extrusion stresses, die swell, and viscous
heating effects in double-ph~e propellants. Journal of Rheology, 31:151-
173, 1987.

Azouz I., Shirazi S. A., Pilehvari A., and Azar J. J. Numerical simulation
of laminar flows of yield-power-law fluids in conduits of arbitrary cross-
section. Journal of Fluids Engineering, 115:710–716, 1993.

Ahmed A. and Alexandrou A. N. Processing of semisolid materials
using a shear-thickening Bingham fluid model. In Proceeding of the

13



1994, ASME Fluids Engineering Division Summer Meeting, FED- Vol.
179, pages 83-87, New York, 1994.

[7] Midson S. P., Minkler R. B., and Brucher H. B. Gating of semisolid
aluminum castings. In 6th International Conference on Semisolid Pro-
cessing of Alloys and Composites, Conference Proceedings, pages 67–71,
Turin, Italy, 27-29 September 2000.

[8] Midson S. P., Thornhill L, E., and Young K. P. Influence of key process
parameters on the quality of semisolid metal cast aluminum components.
In 5th International Conference on Semisolid Processing of Alloys and
Composites, Conference Proceedings, pages 181-188, Golden, CO, 23-25
June 1998.

[9] Fredrickson A. G. Principles and applications of rheology. Prentice Hall,
Englewood Cliffs, NJ, 1964.

[10] Argon A, S. Constitutive equations in plasticity. MIT Press, Cambridge,
MA, 1975.

[11] Malvern L. E, An introduction to the mechanics of the continuous
medium. Prentice Hall, Englewood, NJ, 1969.

[12] Oldroyd J. G. A rational formulation of the equations of plmtic flow for
a Bingham solid. Proceedings of the Cambridge Philosophical Societyy
43:100-105, 1947.

[13] Bird R. B., Dai G. C., and Yarusso B. J. The rheology and flow of
viscoplastic materials. Rev. Chemical Engineering, 1:1–70, 1983.

[14] Bird R. B. and Armstrong R. C. Dynamics of polymeric liquids, John
Wiley and Sons, New-York, NY, 1977.

[15] Papanwtasiou T. C. Flows of materials with yield. Journal of Rheology,
31:385-404, 1987.

[16] Bercovier M. and Engelman M. A finite element method for incompress-
ible non-Newtonian flows. Journal of Computational Physics, 36:313–
326, 1980.

14



[17] O’Donovan E, J, and Tanner, R. I. Numerical study of the Bing-
hamsqueeze film problem. Journal of Non-Newtonian Fluid Mechanics,
15:75-83, 1984,

[18] Burgos G. R., Alexandrou A, N,)and Entov V. Onthe determinationof
yield surfaces in Herschel-Bulkley fluids. Journal of Rheology, 43:463-
483, 1999,

[19] Keunings B. Advances inthecomputer modeling of the flow ofpoly-
merit liquids. accepted for publication in Computational Fluid Dynamics
Journal, ??:??, 1999.

[20] Ellwood K. R. J., Georgiou G. C., Papanwtmiou T. C., and Wilkes
J. O. Laminar jets of Bingham-plastic liquids. Journal of Rheology,
34:787-811, 1990.

[21.] Mitsoulis E., Abdali S. S., and Markatos N. C. Flow simulation of
Herschel-Bulkley fluids through extrusion dies. The Canadian Journal
of Chemical Engineering, 71:147–1607 1993.

[22] Tsamopoulos J. A., Chen M. F., and Borkar A, V. On the spin coating
of viscoplastic fluids. Rheologica Acts, 35:597–615, 1996.

[23] Blackery *J, and Mitsoulis E. Creeping motion of a sphere in tubes
filled with aBingham plastic material. Journal of Non-Newtonian Fluid
Mechanics, 70:59-77, 1997.

[24] Burgos G. R. and Alexandrou A. N. Flow development of Herschel-
Bulkley fluids inasudden 3-Dsquareexpasion. Journal of Rheology,
43:485-498, 1999.

[25] Keentok M., Milthorpe J. F., and O’Donovan E. Onthe shearing zone
around rotating vanes in plmtic liquids: theory and experiment. Journal
of Non-Newtonian Fluid Mechanics, 17:23, 1985.

[26] DZUy N. Q. and Boger D. V. Direct yield stress memurement with the
vane method. Journal of Rheology, 29:334, 1985.

[27] Beaulne M. and Mitsoulis E, Creeping motion of a sphere in tubes
filled with Herschel-Bulkley fluids, Journal of .Non-Newtonzan Fluid
Mechanics, 72:55-71, 1997.

15



[28] Papanastasiou T. C. and Boudouvis A. G. Flows of viscopl~tic materi-
als: models and computations. Computers and Structures, 64:677–694,
1997.

[29] Alexandrou A. N., Duc E., and Entov V. Inertial, viscous and yield
stress effects in Bingham fluid filling of a 2-D cavity. Journal of Non-
Newtonian Fluid Mechanics, 96:383-403, 2001.

[30] Paradies C. J. and Rappaz M. Modeling the rheology of semisolid metal
alloys during die cmting. In Modeling of Casting, Welding and Advanced
Solidification Processes VIII. Proceedings of the 8th International Con-
ference on Modeling of Casting and Welding Processes, pages 933-940,
San Diego, CA, June 7-12 1998. The Minerals, Metals and Materials
Society, Edited by Thorn= B. G. and Beckermann C.

[31] Koke J., Modigell M., Hufschmidt M., and Alexandrou A. A study on
the die filling behavior with semisolid fluids. In 6th International Con-
ference on Semisolid Processing of Alloys and Composites, Conference
Proceedings, pages 635-639, Turin, Italy, 27-29 September 2000.

[32] Georgiou G. C. Singular finite elements for newtonian flow problems
with stress singularities. PhD thesis, The University of Michigan, Am
Arbor, MI, 1989.

[33] Housiadm K., Georgiou G. and Tsamopoulos J. The steady annular ex-
trusion of a Newtonian liquid under gravity and surface tension. Inter-
national Journal for Numetical Methods in Fluids, 33: 1099–1 119, 2000,

[34] Irons B. M. A frontal solution program for finite element analysis. In-
ternational Journal for Numetical Methods in Engineering, 2:5, 1970.

[35] Walters R. A, The frontal method in hydrodynamics simulations. Com-
puters and Fluids, 8:265, 1980.

[36] Boudouvis A. G. and Striven L. E. Explicitly vectorized frontal routine
for hydrodynamic stability and bifurcation analysis by Galerkin/finite
element methods. In Proc. Supercomp. Appl. Symp., Oct. 31-Nov. 1,
1984.

[37] Hood P. Rental solution program for unsymrnetric matrices. Interna-
tional Journal for Numetical Methods in Engineering, 10:379, 1976.

16



.

Figure 1: Flow instability in SSMP:
minium Pechiney).

toothpmte behavior (Courtesy of Alu-



.

.,

.,

Figure2: Flow instability in SSMP:toothpmte behavior (Courtesy of Alu-
minium Pechiney).
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Figure 3: Summary of the flow patterns observed in 2-D die filling [29].
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Figure 4: Geometry of the two-dimensional cavity (H, 1,L).
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Figure5: Schematic of the “toothp=te” behavior inasir-nple cavity,
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Figure6: Geometry and finite element mesh.
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Figure7: Summary of the flow patterns observed forthe L= 10 geometry.
Yielded and unyielded regions are highlighted.
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Figure8: Toothpaste behavior, Re=l, Bi =3, L=1O. The disturbance is
imposed from t= Ountilt= 1.5.
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Figure9: Stable jet behavior, Re= 5, Bi = 1,L = 10. The disturbance is
imposed from t = O until t = 1.5.
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Figure 10: Stability of the jet when hitting a vertical suface (L = 10), the
Remolds and Bingham nu~bers being the control parameters. A-” mound”
pattern; ●-” disk” pattern; ❑-” bubble” pattern; V-’’ transition” pattern. The
hollow symbols (Cl, ad V) represent the c~es discussed in detail and pic-
tured on the map. The estimated boundary between the stable and unstable
behaviors has been sketched in. Stable and unstable behaviors arerespec-
tively below andabove this limiting line.
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Figure 11: Stability of the jet when hitting a vertival surface (L = 10),
the Saint-Venant and Reynolds numbers being the control parameters. H-
stable pattern; A-unstable pattern. The hollow symbols (Cl and A) represent
the ewes pictured on the map. The estimated boundary between the two
behaviors has been sketched in.
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Figure 12: Stability of the flow (Re = 1, Bi = 0.7) for three different jet
lengths. (a) L = 10, (b) L = 15, (c) L = 20.
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Figure 13: Estimated stability limits for different jet lengths. L = 10 (solid
line), L = 15 (dmhed line) and L =20 (dmhdotted line).
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Figure 14: Estimated stability limits for different power-law coefficients. n =
1 (solid line), n = 0.5 (dashed line) and n ==1.5 (dmhdotted line).
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PROJECT STATEMENT

● Determine effect of processing temperature on microstructural evolution of
semi-solid alloys during reheating.

o Determine effect of isothermal holding on microstructure evolution in the
semi-solid state.

o Characterize differences in microstructure evolution of various semi-solid
billets.

o Investigate formation mechanism of the entrapped liquid.

● Provide quantatitive data for optimization of industrial practice.

Strateav

● The theological behavior and flow properties of semi-solid alloys depend
on their microstructure developed during reheating. Thus an accurate



understanding of microstructure evolution during commercial processing
conditions is critical for optimization and control of semi-solid processing.

. In this study, various semi-solid billets including MHD, GR (by addition of
Ti-B or Si-B alloys), SIMA, new MIT and UBE processed materials were
evaluated. Processing conditions investigated include different processing
temperatures during continuous heating, as well as isothermal holding for
different time at commercial forming temperatures.

. Image analysis was carried out to quantify the semi-solid microstructure.
Three important characteristic parameters--shape factor, particle size of
Alpha particles, as well as the amount of entrapped liquid within the Alpha
phase were measured in this study.

ACHIEVEMENTS THIS QUARTER

During this quarter, extensive image analysis was carried out to quantify
microstructure evolution of various semi-solid billets manufactured by MHD, GR
(by addition of Ti-B or Si-B alloys), SIMA, new MIT and UBE processes,
respectively. Detailed results are given as follows.

1.

2.

3.

4.

The chemically grain refined billets have relatively high entrapped liquid
content. During commercial forming conditions, the entrapped liquid
content usually accounts for 15-30% of the total liquid phase for grain
refined billets, and 8-15% for SIMA and MHD billets.

The formation of the entrapped liquid can be attributed to the coalescence
of the broken dendrite arms upon reheating. SEM analysis reveals that
there are two types of entrapped liquid in nature. One is entrapped in
isolation within the Alpha phase, and the other is entrapped in 2D but is
connected to the intergranular eutectic in 30. Specifically, we found that
the isolated entrapped liquid consists of etiremely fine eutectic grains (in
order of several micrometers), and a lot of small oxide spheroids have
been identified as the nuclei for the fine eutectic grains.

Higher processing temperature tends to decrease shape factor value and
entrapped liquid content, however, it also increases the Alpha particle size
and the runoff of liquid phase during semi-solid forming. A favorite
temperature range for aluminum semi-solid billets is between 580-590”C.
For grain refined billets, 585-590”C is recommended.

Isothermal holding leads to a speroidization and a coarsening process of
Alpha particles. Analysis on quantitative data points out that an optimum



isothermal holding time is between 2-8 minutes. For grain refined billets,
the upper limit is recommended.

5. Specifically, both processing temperature and isothermal holding have a
significant influence on the entrapped liquid content of GR billets.
Increasing processing temperature or isothermal holding time decreases
entrapped liquid content of GR billets considerably. However, processing
temperature and isothermal holding time show little effect on the
entrapped liquid content of SIMA and MHD billets.

AoPendix A is a detailed report on the quantitative microstructural
characterization of various semi-solid billets.

CHANGES IN PROJECT STATEMENTS

None

WORK PLANNED FOR NEXT QUARTER

This project is completed.



Appendix A

QUANTITATIVE MICROSTRUCTURE CHARACTERIZATION OF
COMMERCIAL SEMI-SOLID ALUMINUM ALLOYS

PR-01-#2

Qingyue Pan, and Diran Apelian,

Advanced Casting Research Center (ACRC)
Metal Processing Institute
WPI, Worcester, MA 01609

The theological propetiies of semi-solid metal slurries are strongly dependent on
their microstructure. Specifically, our previous studies identified that three
characteristic microstructural parameters are ctitical in determining theological
behavior of aluminum semi-solid slurries. They are

1. Particle size of the Alpha phase,
2. Shape factor of the Alpha particles, and
3. Entrapped liquid content within the Alpha particles.

Using the MPI image analyzer, we quantified microstructual evolution of various
semi-solid billets during commercial forming conditions. In report PR-01-#I, we
presented our results on A356 billets manufactured by both MHD and GR
processes. This repoti presents our recent results on new MIT, SIMA (strain-
induced melt activation), SiBloy (grain refined by addition of Si-B alloys) and UBE
materials. Specifically, we compared the quantitative data of all these materials
during commercial processing renditions, including continuous heating and
isothermal holding at a commercial forming temperature. Therefore, this report
provides a mmprehensive knowledge base in understanding the effect of
processing renditions and matetial genealogy on the microstructure evolution
and theological properties of various semi-solid metal slurries.

‘1.EXPERIMENTAL

1.1 Materials

The semi-solid billets evaluated include MHD, GR (by addition of Ti-B or Si-B
alloys), SIMA, new MIT, as well as UBE processed materials. Table 1 lists alloy
designations and composition. Sliced samples with approximately 0.25-inch
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thickness each were cut directly from the billets. Figure 1 illustrates the
experimental procedures.

Table I: Chemical composition of the alloys investigated

Composition,YO
Alloy

Si Mg Cu Mn Fe
A356 (MHD) 6.92 0.18 0.09 0.05 0.1
A356 (GR) 6.85 0.33 0.11 0.05 0.1

SiBloy(GR) 6.84 0.29 0.0005 0.003 O*O7

A357(SIMA) 6.61 0.53 -.. 0.O1 0.1

A356(MIT) 7.27 0.38 0.01 --- 0.1
A1-Si-Cu(UBE) --- --- --- --- ---

1.2 Processin~ Conditions

Processing conditions investigated in this study include continuous heating and
quenching samples at different temperatures in the ~o-phase region, as well as
isothermal holding at 582°C and quenching samples at different holding time, as
shown in Figure 2.

The first series of experiments dealt with the efiect of
on semi-solid microstructure during continuous heating
The average heating rate was about 49°C/min.

processing temperature
in the semi-solid state.

The second series of experiments were designed to investigate the effect of
isothermal hold on microstructural evolution at a temperature commonly used in
commercial forming operations (582°C). Holding time varied from 1 to 64
minutes.

7.3 Microstructure Characterization

Metallographic observations were made on the water-quenched samples. The
specimens were etched with Keller’s reagent after mounting, grinding, and
polishing.

Microstructure characterization was performed using optical microscopy and
image analyzer (microGOP2000/S). Three specific microstructural parameters
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were measured to quantitatively characterize
are

1. particle size of the Alpha phase, D
2. shape factor of the Alpha particles,

the semisolid microstructure. They

SF
3. entrapped liquid content within the Alpha particles, V’

The particle size (L)) is determined by

(1)

Where A is the area of the particle. The average particle size is the mean value
of the total numbers of particles measured.

The shape factor (SF) is defined as

SF =
p2

4 nA

(2)

Where P is the perimeter of the particle. For a perfectly globular shape, SF is
equal to 1. The more irregular the particles, the higher the shape factor value.
The shape factor values reported here are the mean values of the total numbers
of particles measured.

Specifically, we found that there are two types of entrapped liquid in nature. One
is entrapped within Alpha particles in isolation, and the other is entrapped within
the Alpha particles in 2D, but is connected to the intergranular eutectic in 3D. The
entrapped liquid content (Vf) here is defined as

AEL
Vf= x 100%

ALiquid

(3)

Where AELis the area of the entrapped liquid in isolation, Au~Uidis the area of the
entire liquid phase including the intergranular eutectic phase, the entrapped liquid
in isolation, as well as the entrapped liquid in connection to the intergranular
eutectic. Since most entrapped liquid has a spherical shape, here the mean
entrapped liquid content in 2D can be considered as an approximate volume
fraction value in 3D.

In order to obtain results of statistical significance, more than twelve images were
measured for each sample. In addition, since there is significant difference in
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microstructural scale throughout MHD A356, GR A356 and SiBloy as-cast billets,
we analyzed semi-solid microstructure at twelve different locations on the cross
section, which cover the whole region within a radius.

2. RESULTS& ANALYSIS

Microstructural evolution of various semi-solid billets as a function of material
genealogy and processing temperature is presented below in section 2.1.
Microstructure evolution as a function of material genealogy and isothermal
holding time at 582°C is presented in section 2.2. This is followed by analysis on
formation mechanism of the entrapped liquid within the Alpha phase.

2.1 Microstructural Evolution Durin~ Continuous Reheatinq

From a theological standpoint, an “ideal” semi-solid microstructure
of small, round Alpha particles containing no entrapped

is composed
liquid and

homogeneously distributed in a eutectic phase, ‘as illustrated in Figure 3. The
small size of the Alpha particles is beneficial for the casting of thin-walled parts,
while a more spherical shape, and the absence of entrapped liquid are critical for
the improvement of the slurry flow properties during die filling.

Figure 4 compares typical as-cast microstructure of various semi-solid billets. It
can be seen that their as-cast microstructure are quite different. The as-cast
microstructure of GR billets (by addition of Ti-B or Si-B alloys) is a dendritic
structure with a very fine scale, while the microstructure of MHD billets is a
mixture of dendritic and rosette-like structures. SIMA billets show typical
deformed microstructure with a lot fine Mg2Si particles. The new MIT processed
billets, however, have a globular Alpha structure, which is formed due to a rapid
mechanical stirring and a strict cooling rate control during billet casting.

Upon reheating, the above billets show quite different microstructural evolution.
Figures 5 and 6 give the typical semi-solid microstructure of all these billets at
580°C and 585°C, respectively. Visually, there are significant differences among
them in terms of the shape and size of the Alpha particles, as well as the
entrapped liquid content within the Alpha phase. Detailed image analysis results
are given below.



2.1.1 Entrapped Liquid Content

The entrapped liquid within the Alpha phase has a significant influence on the
theological behavior of semi-solid slurry. As the entrapped liquid does not
participate in the deformation during die filling, it has the effect of decreasing
“effective” liquid fraction, and thus flow properties.

Figure 7 details the evolution of entrapped liquid as a function of processing
temperature and material genealogy. It can be seen that

. GR billets (by addition of Ti-B or Si-B alloys) have much higher entrapped
liquid content than MHD billets. The entrapped liquid content in Ti-B
refined billets can account for as high as 36% of the liquid phase at 578”C.
During commercial forming temperature range between 580-590”C, the
entrapped liquid content in GR billets varies between 15-30Y0,which is 2-3
times higher than in MHD billets

. Processing temperature has a significant influence on the entrapped liquid
content of GR billets. With increasing temperature, the entrapped liquid
content decreases dramatically, however, processing temperature shows
little effect on the entrapped liquid content of MHD and SIMA billets.

. No entrapped liquid was found in MIT and UBE processed billets.

2,1.2 Particle Size

Figure 8 details the evolution of particle size as a function of processing
temperature and material genealogy. The quantitative data shows that

e

Higher processing temperature tends to increase particle size, but the
effect is not significant in commercial forming temperature range (580-
590”C).

The Alpha particle size in grain refined billets (by addition of Ti-B or Si-B
alloys) is much larger than in MHD, SIMA and MIT processed billets.
Among them, the SIMA billets have the smallest Alpha particle size, and
very uniform size distribution, falling in the range between 50-80 pm in the
temperature range investigated.

Interestingly, processing temperature has no influence on Alpha particle
size of Si-B grain refined billets (SiBloy). In addition, compared to Ti-B
grain refined billets (GR A356), the particle size distribution in Si-B refined
billets is more uniform.
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2.1.2 Shape Factor

Figure 9 details the evolution of shape factor as a function of processing
temperature and material genealogy. It can be seen that

During commercial forming temperature range (580-590”C), shape factor
values of all the semi-solid billets decrease with increasing temperature,
indicating that higher forming temperature leads to a better spheriodization
of Alpha particles.

As shown in Figure 9, SIMA billets have the smallest shape factor value,
corresponding to the best spheroidized Alpha particles. Whereas, Si-B
refined billets have the highest shape factor value, thus corresponding to
the most irregular shape of Alpha particles. This is consistent with
microstructure observations.

2.2 Microstructure/ Evolution Durina Isothermal Holding at 582%

Figures 10 and 11 give the semi-solid microstructure of various billets
isothermal holding for 2 minute, and 32 minute, respectively. A rapid evolution of
Alpha particles towards a globular structure was seen in MHD, SIMA and MIT
billets, whereas relatively slow spheroidization was observed in GR billets. This
=n be clearly seen from the image analysis results given below.

2.2.1 Entrapped Liquid Content

Figure 12 gives the evolution of entrapped liquid content as a function of
isothermal holding time and material genealogy. The results show that

@ Isothermal holding has a significant effect on the entrapped liquid content
of GR billets (by addition of Ti-B or Si-B alloys). With increasing isothermal
holding time, the entrapped liquid content decreases considerably.

. Isothermal holding, however, shows little influence on the entrapped liquid
content of MHD and SIMA processed billets. Again, no entrapped liquid
was found in MIT processed billets under isothermal holding conditions.
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2.2.2 Particle Size

Figure 13 gives the evolution of particle size as a function of isothermal holding
time and material genealogy.

As expected, isothermal holding leads to coarsening of Alpha particles.
Specifically, a good linear dependence between particle size and
isothermal holding time was found in GR (by addition of Ti-B alloys), MHD,
MIT and SIMA processed billets.

Interestingly, isothermal holding does not show any influence on the
particle size of Si-B refined billets. With increasing isothermal holding time,
the particle size of Si-B refined billets tends to a constant value (around
160 pm), even isothermal holding for 64 minutes.

The insensitivity of particle size in Si-B grain refined billets to both
processing temperature and isothermal holding time is most likely related
to the long-term grain refinement effect of Si-B alloys found by ACRC
researchers.

2.2.3 Shape Factor

Figure 14 gives the evolution of shape factor as a function of isothermal holding
time and material genealogy. It can be seen that

. A rapid spheroidization process usually occurs in the first 1-2 minute
isothermal holding, and thereafter, the process proceeds very slowly.

. Si-B and Ti-B grain refined billets have higher shape factor values than the
other billets, corresponding to a more irregular shape of Alpha particles.
Moreover, isothermal holding shows little effect on the spheroidization of
Alpha particles in GR billets, particulady for Si-B grain refined billets.

s Specifically, a significant difference in shape factor values has been
observed throughout the grain refined billets. Usually, the microstructure
at billet center have higher shape factor values than those at billet edge,
indicating that the speroidization process at billet center is relatively slow.
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2.3 Entra~~ed Liquid Analysis

As stated before, the entrapped liquid within the Alpha particles does not
participate in the deformation during die filling, thus it greatly decreases the flow
properties of the semi-solid slurry. Moreover, since no feeding is available during
the subsequent solidification process, the entrapped liquid may cause casting
defects such as microporosity, shrinkage etc. Therefore, an understanding of
origin and nature of the entrapped liquid is critical.

Figures 15 through 16 show typical morphologies of the entrapped liquid within
the Alpha phase under both microscope and SEM. It is clear that

*

*

●

e

The entrapped liquid has different morphologies (see Figure 15). One
typical morphology is circular. Others include irregular shapes such as
triangle, rectangular or ellipse, etc.

The morphology and amount of the entrapped liquid is strongly dependent
on the as-cast microstructure of the billet. A fine dendritic as-cast structure
tends to form high volume of entrapped liquid with both circular and
irregular shapes, while a rosette-like as-cast structure gives rise to
intermediate volume of globular entrapped liquid. If the as-cast billet has a
spherical Alpha phase (for example, the MIT billet), one can obtain semi-
solid microstructure completely free of the entrapped liquid upon reheating
(compare Figure 4d with Figures 5d and 6d).

Specifically, SEM observations clearly show that there are two types of
entrapped liquid In nature. As shown in Figure 16(a), one is entrapped in
isolation within the Alpha particles, and the other is entrapped in 2D but is
connected to the intergranular eutectic in 3D. This can be easily identified
by a comparison between the entrapped liquid and the intergranular
eutectic. In fact, the entrapped liquid, which is connected to the
intergranular eutectic in 3D, has exactly the same morphology as the
intergranular eutectic phase.

More importantly, an enlarged view of the entrapped liquid in isolation
reveals that the entrapped liquid indeed consists of many extremely fine
eutectic grains, as shown in Figure 16(b). The grain size is in order of
several micrometers.

Further SEM and EDAX analysis points out
oxide spheroids inside each eutectic grain, as
small spheroids serve as nuclei for eutectic
formation of the extremely fine eutectic grains.

that there are many small
shown in Figure 16(c). The
grains, thus leading to the
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Based on the above observations, it is logical to assume that the origin of the
entrapped liquid is due to the coalescence of the broken dendritic arms formed
either by MHD or grain refinement treatment. Compared to rosette-like structure,
the fine dentritic structure tends to entrap more liquid and form more irregular
shapes during the coalescence upon reheating, and that’s why the GR billets
have much more entrapped liquid, and the entrapped liquid has more irregular
shapes than MHD billets.

Obviously, our findings clarify some conflicting claims as to whether the
entrapped liquid is connected to the rest of the eutectic or it is entrapped in
isolation. Still, there are some issues remaining open.

e Where do the oxide spheroids come from? They come from the broken
oxide film during billet casting? or from the oxidization due to the addition
of Sr?

. Specifically, we observed that most modified eutectic silicon grows from
the oxide films. Is this a new mechanism for modification of the eutectic
silicon?

Further experiments are being carried out to try to answer these questions.
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3. CONCLUSIONS

Based on our extensive microstructural observations and quantitative data, the
following conclusions were drawn:

1.

2.

3.

4.

5.

The chemically grain refined billets have relatively high entrapped liquid
content. During commercial forming conditions, the entrapped liquid
content usually accounts for 15-30% of the total liquid phase for grain
refined billets, and 8-15% for SIMA and Mi-iD billets.

The formation of the entrapped liquid can be attributed to the coalescence
of the broken dendrite arms upon reheating. SEM analysis reveals that
there are two types of entrapped liquid in nature. One is entrapped in
isolation within the Alpha phase, and the other is entrapped in 20 but is
connected to the intergranular eutectic in 3D. Specifically, we found that
the isolated entrapped liquid consists of extremely fine eutectic grains (in
order of several micrometers), and a lot of small oxide spheroids have
been identified as the nuclei for the fine eutectic grains.

Higher processing temperature tends to decrease shape factor value and
entrapped liquid content, however, it also increases the Alpha particle size
and the runoff of liquid phase during semi-solid forming. A favorite
temperature range for aluminum semi-solid billets is between 580-590”C.
For grain refined billets, 585-590”C is recommended.

Isothermal holding leads to a speroidization and a coarsening process of
Alpha particles. Analysis on quantitative data points out that an optimum
isothermal holding time is between 2-8 minutes. For grain refined billets,
the upper limit is recommended.

Specifically, both processing temperature and isothermal holding have a
significant influence on the entrapped liquid content of GR billets.
Increasing processing temperature or isothermal holding time decreases
entrapped liquid content of GR billets considerably. However, processing
temperature and isothermal holding time show little effect on the
entrapped liquid content of SIMA and MHD billets.
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Figure 3: Schematic diagram of an “ideal” semi-solid structure.



(a) MHD A356 (b) GR A356 (c) SiBIoy

(d) MIT A356

Figure 4: As-cast

(e) SIMA 357

microstructure of various semi-solid billets.
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(a) MHD A356 (b) GR A356 (c) SiBloy

(d) MIT A356 (e) SIMA A357 (f) UBE (A1-Si-Cu)

Figure 5: Semi-solid microstructure of various billets at 580°C.
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(a) MHD A356 (b) GR A356 (c) SiBloy

(d) MIT A356 (e) SIMA 357

Figure 6: Semi-solid microstructure of various billets at 585”C.
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Figure 7: Evolution of entrapped liquid content as a function of
processing temperature and material genealogy.
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(a) MHD A356

(d) MIT A356

(b) GR A356 (c) SiBloy

(e) SIMA 357

Figure 10: Semi-solid microstructure of various billets at isothermal
holding for 2 minutes at 582°C .



(a) MHD A356 (b) GR A356 (c) SiBloy

(d) MIT A356 (e) SIMA 357

Figure 11: Semi-solid microstructure of vatious billets at isothermal
holding for 32 minutes at 582°C .
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(a) MHD A356 at 578*C (b) GR A356 at 578°C
,

(C) Enlarged view of the entrapped liquid

Figure 15: Different morphologies of the entrapped liquid.
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(a) GR A356 at 578oC,
Keller’s reagent

(b) Enlarged view of type A entrapped
liquid, Keller’s reagent.

Figure 16:

(c) Enlarged view of type A entrapped
liquid, electropolishing.

SEM microstructure of the entrapped liquid, showing (a)
two types of entrapped liquid in nature; (b) extremely fine
eutectic grains, and (c) the nuclei-some oxide spheroids in
each eutectic grain.
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